TikZ
and PGFPlots
in "Asset Pricing with Entry and Imperfect Competition"
List of figures:
- Summary of an economy with an Extensive Investment Margin
- Representation of Competition in an industry (a simple Salop model)
- Elasticity of entry
Summary of the economy
From blueprints, to production across two industries and aggregation of varieties into a final consumption bundle:
\tikzset{
pil/.style={ ->, thick, shorten <=0.1pt, shorten >=0.1pt,},
dasharrow/.style={ ->, thick, shorten <=1pt, shorten >=1pt, dashed},
}
\begin{tikzpicture}[scale=0.75]
\begin{scope}[color=black]
\draw (7,5) circle (1.5 cm);
\end{scope}
\node (const) at (7,5) { $\mathbf{C_t}$ };
\node[anchor=west, text width=3.5cm] (cons) at (14,5) { {Final consumption:\\ aggregation of industry goods}};
% differentiate industries
\node[text width=3cm](industry1) at (4,2.4) {};
\node(industry2) at (10,2.4) {};
% consumption from industry east
\node (c1) at (8.5,5) {};
\node (c2) at (10,2) {};
\draw[pil, bend right=35, draw=blue ] (industry2.south) to (c1.east);
\node[anchor=west] (cons2) at (10,4) { $\mathcal{C}_{2,t}$ };
% consumption from industry west
\node (c3) at (4,2) {};
\node (c4) at (5.5,5) {};
\draw[pil, bend left=35, draw=red ] (industry1.south) to (c4.west);
\node[anchor=east] (cons1) at (4,4) { $\mathcal{C}_{1,t}$ };
\begin{scope}[color=red]
\draw (4,0) circle (2cm);
\end{scope}
\begin{scope}[color=blue]
\draw (10,0cm) circle (2cm);
\end{scope}
\node[anchor=west, text width=3cm] (cons) at (14,0) { {Industry Level Product Market Competition}};
%firms in first industry circle
\node (11) at (5,1) {\circle*{4}};
\node (12) at (3,-0.1) {\circle*{4}};
\node (13) at (5.1,-0.8) {\circle*{4}};
\node (14) at (3.6,-1.1) {\circle*{4}};
\node (15) at (4,1.6) {\circle*{4}};
\node (16) at (4,0) {\circle*{4}};
\node (17) at (3.8,-0.8) {\circle*{4}};
\node (18) at (3.2,-1) {\circle*{4}};
\node (19) at (4.8,-1.1) {\circle*{4}};
\node (110) at (3,1) {\circle*{4}};
\node (111) at (5.2,0.1) {\circle*{4}};
%firms in second industry circle
\node (21) at (11,1) {\circle*{4}};
\node (22) at (9,-1) {\circle*{4}};
\node (24) at (10,-.5) {\circle*{4}};
\node (25) at (11,0) {\circle*{4}};
\node[anchor=west] (omega11) at (0,1) {firm} ;
\draw[pil, bend left=30 ] (omega11.east) to (12.west);
\node[anchor=west] (omega12) at (0,-2.5) {industry} ;
\draw[pil, bend right=20 ] (omega12.east) to (3.5,-2cm);
%innovators
\draw[thin] (2.5,-2.8)--(6,-2.8);
\draw[ultra thick] (8,-2.8)--(11.5,-2.8);
\node (31) at (4.8,-3.2) {\circle{4}};
\node (32) at (4.4,-3.5) {\circle{4}};
\node (33) at (5.2,-3.8) {\circle{4}};
\node (34) at (5.8,-3.4) {\circle{4}};
\node (35) at (4.6,-4.2) {\circle{4}};
\node (36) at (5.5,-4.2) {\circle{4}};
\node (37) at (10,-3.2) {\circle{4}};
\node (39) at (10.2,-3.8) {\circle{4}};
\node (310) at (9.8,-3.4) {\circle{4}};
\node (312) at (9.9,-4.1) {\circle{4}};
\node (313) at (9.1,-4) {\circle{4}};
\node (314) at (9.2,-3.2) {\circle{4}};
\node[anchor=west, text width=3cm,] (omega13) at (0,-4.8) {potential entrant \\(blueprint)} ;
\node (omega13b) at (3.3,-4.6) {} ;
\draw[pil, bend right=10 ] (omega13b.east) to (35.west);
\draw[dasharrow, bend right=30, draw=red ] (31.east) to (13.south);
\draw[dasharrow, bend left=30, draw=blue ] (310.west) to (22.south);
\node [anchor=west, text width=3.5cm, ] (innov) at (14,-3.5) {Innovation Sector};
\end{tikzpicture}
Industry Competition
Hotelling-Salop model of competition:
\newcommand{\overbar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu}
\begin{tikzpicture}
\begin{scope}[shift={(-7,0)}]
\foreach \x [count=\p] in {0,...,5} {
\node[shape=circle,fill=black, scale=0.5] (\p) at (\x*60:1) {};
\node[shape=circle,fill=red, scale=0.5] (\p) at (-30-\x*60:1) {};
};
\draw (1) arc (-30:360:1);
\draw [dotted, gray] (-1,0) -- (1,0);
\node[] (Mlo) at (0,0.2) {$\overbar{M}_{lo}$};
\end{scope}
\foreach \x [count=\p] in {0,...,5} {
\node[shape=circle,fill=black, scale=0.5] (\p) at (\x*60:3) {};
\node[shape=circle,fill=red, scale=0.5] (\p) at (-30-\x*60:3) {};
};
\draw (1) arc (-30:360:3);
\draw [dotted, gray] (-3,0) -- (3,0);
\node[] (Mhigh) at (0,0.2) {$\overbar{M}_{hi}$};
\end{tikzpicture}
Entry Elasticity
\begin{tikzpicture}[domain=0:5,
scale=1, thick]
\tikzset{
% >=stealth' ,
pil/.style={ ->, thick, shorten <=0.1pt, shorten >=0.1pt,},
dasharrow/.style={ ->, thick, shorten <=1pt, shorten >=1pt, dashed},
%Define style for boxes
}
\usetikzlibrary{calc} %allows coordinate calculations.
\tikzstyle{loosely dashed} = [dash pattern=on 6pt off 6pt]
\tikzstyle{dasharrow} = [->, thick, shorten <=1pt, shorten >=1pt, dashed]
% dot/.style={circle,fill=black,minimum size=4pt,inner sep=0pt, outer sep=-1pt},
%Define linear parameters for supply and demand
\def\dint{4.5} %Y-intercept for DEMAND.
\def\dslp{-0.5} %Slope for DEMAND.
\def\sint{2} %Y-intercept for SUPPLY.
\def\sslp{0.5} %Slope for SUPPLY.
\def\demand{\x,{\dslp*\x+\dint}}
\def\supply{\x,{\sslp*\x+\sint}}
% Define coordinates.
\coordinate (ints) at ({(\sint-\dint)/(\dslp-\sslp)},{(\sint-\dint)/(\dslp-\sslp)*\sslp+\sint});
\coordinate (ep) at (0,{(\sint-\dint)/(\dslp-\sslp)*\sslp+\sint});
\coordinate (eq) at ({(\sint-\dint)/(\dslp-\sslp)},0);
\coordinate (dint) at (0,{\dint});
\coordinate (sint) at (0,{\sint});
% DEMAND
\draw[thick,color=dark-gray, domain=0.25:5.25] plot (\demand) node[right] {Demand};
% SUPPLY
\draw[very thick,color=black, domain=0.25:5.25] plot (\supply) node[right] {Supply};
% supply going to infinity
\def\fe{3.25}
\draw [loosely dashed, color=black] (0.2, \fe) -- (5.5,\fe);
\filldraw[fill=black, draw=black] (0,\fe) circle (0.1);
\node[anchor=east] (fe) at (-0.1,\fe) { $\bar{v}_h$ };
\node[anchor=south, color=dark-gray] (zeta) at (6,\fe) { $\zeta \to \infty$};
\draw[->, bend left=30, draw=dark-gray] (4.6,4.2) to (5.25,\fe+0.1);
% Draw axes, and dotted equilibrium lines.
\draw[->] (0,0) -- (6.2,0) node[right] {\Large{ $M_h$ }}; % axes
\draw[->] (0,0) -- (0,6.2) node[above] {\Large{ $v_h$ }};
\end{tikzpicture}
\begin{tikzpicture}[domain=0:5,
scale=1,thick]
\usetikzlibrary{calc} %allows coordinate calculations.
\tikzstyle{loosely dashed} = [dash pattern=on 6pt off 6pt]
\tikzstyle{dasharrow} = [->, thick, shorten <=1pt, shorten >=1pt, dashed]
%Define linear parameters for supply and demand
\def\dint{4.5} %Y-intercept for DEMAND.
\def\dslp{-0.5} %Slope for DEMAND.
\def\sint{-2} %Y-intercept for SUPPLY.
\def\sslp{2} %Slope for SUPPLY.
\def\demand{\x,{\dslp*\x+\dint}}
\def\supply{\x,{\sslp*\x+\sint}}
% Define coordinates.
\coordinate (ints) at ({(\sint-\dint)/(\dslp-\sslp)},{(\sint-\dint)/(\dslp-\sslp)*\sslp+\sint});
\coordinate (ep) at (0,{(\sint-\dint)/(\dslp-\sslp)*\sslp+\sint});
\coordinate (eq) at ({(\sint-\dint)/(\dslp-\sslp)},0);
\coordinate (dint) at (0,{\dint});
\coordinate (sint) at (0,{\sint});
% DEMAND
\draw[thick,color=dark-gray, domain=0.25:5] plot (\demand) node[right] {Demand};
% SUPPLY
\draw[very thick,color=black, domain=1.25:4] plot (\supply) node[right] {Supply};
\def\Me{2.6}
\draw [loosely dashed, color=black] (\Me, 0) -- (\Me, 6);
\filldraw[fill=black, draw=black] (\Me, 0) circle (0.1);
\node[anchor=north] (me) at (\Me, -0.1) { $\bar{M}_h$ };
\node[anchor=west, color=dark-gray] (zeta) at (\Me, 0.5) { $\zeta \to 0$};
\draw[->, bend right=20, draw=dark-gray] (1.6,1) to (2.5,0.5);
% Draw axes, and dotted equilibrium lines.
\draw[->] (0,0) -- (6.2,0) node[right] {\Large{ $M_h$ }}; % axes
\draw[->] (0,0) -- (0,6.2) node[above] {\Large{ $v_h$ }};
\end{tikzpicture}